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Stable kinetochore-microtubule attachment
requires loop-dependent Ndc80-Ndc80 binding
Soumitra Polley1 , Helen M€uschenborn1,†, Melina Terbeck1, Anna De Antoni2,‡ , Ingrid R Vetter1 ,

Marileen Dogterom3, Andrea Musacchio1,4,* , Vladimir A Volkov3,5,** & Pim J Huis in ’t Veld1,***

Abstract

During cell division, kinetochores link chromosomes to spindle
microtubules. The Ndc80 complex, a crucial microtubule binder,
populates each kinetochore with dozens of copies. Whether adja-
cent Ndc80 complexes cooperate to promote microtubule binding
remains unclear. Here we demonstrate that the Ndc80 loop, a
short sequence that interrupts the Ndc80 coiled-coil at a con-
served position, folds into a more rigid structure than previously
assumed and promotes direct interactions between full-length
Ndc80 complexes on microtubules. Mutations in the loop impair
these Ndc80-Ndc80 interactions, prevent the formation of force-
resistant kinetochore-microtubule attachments, and cause cells to
arrest in mitosis for hours. This arrest is not due to an inability to
recruit the kinetochore-microtubule stabilizing SKA complex and
cannot be overridden by mutations in the Ndc80 tail that
strengthen microtubule attachment. Thus, loop-mediated organi-
zation of adjacent Ndc80 complexes is crucial for stable end-on
kinetochore-microtubule attachment and spindle assembly check-
point satisfaction.
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Introduction

Establishing firm attachments between mitotic chromosomes and

spindle microtubules is essential for faithful chromosome segrega-

tion and genome stability. Kinetochores, large protein platforms that

assemble on centromeric DNA, mediate the attachment of chromo-

somes to microtubules. During mitosis, kinetochores first bind the

lateral surface of microtubules to support the congression of chro-

mosomes toward the middle of the dividing cell. They then capture

the ends of dynamic microtubules to promote chromosome biorien-

tation on the mitotic spindle (Tanaka et al, 2005; Kapoor et al, 2006;

Akiyoshi et al, 2010; Magidson et al, 2011; Shrestha & Draviam,

2013; Chakraborty et al, 2019).

The widely conserved Ndc80 heterotetramer is the prime media-

tor of the binding between kinetochores and the ends of microtu-

bules (Cheeseman et al, 2006; DeLuca et al, 2006; Wei et al, 2007;

Ciferri et al, 2008; Guimaraes et al, 2008; Alushin et al, 2010; Sundin

et al, 2011; Tooley et al, 2011). Ndc80 binds microtubules through

the N-terminal calponin homology (CH) domains of its NDC80 (also

named HEC1) and NUF2 subunits, with a contribution of the

unstructured NDC80 N-terminal tail. Ndc80 docks onto the inner

kinetochore through the RWD domains of its SPC24 and SPC25 sub-

units. The CH- and RWD-domains are separated by a long coiled-

coil stalk (Musacchio & Desai, 2017).

The spindle assembly checkpoint (SAC) delays anaphase onset

until all chromosomes have bioriented on the mitotic spindle. Vari-

ous mitotic kinases and phosphatases control the interplay between

chromosome biorientation and SAC signaling. A crucial aspect of

this dynamic interplay is the ability of the kinetochore to identify

and correct erroneous (e.g., syntelic) microtubule attachments. Key

signaling substrates are well known (for example KNL1 and the

NDC80 tail), but how they respond to kinetochore-microtubule

binding in general, and to biorientation specifically, is poorly under-

stood (Saurin, 2018).

Tension exerted by spindle microtubules pulling on kinetochores

has a crucial role in error correction (Lampson & Grishchuk, 2017),

but molecular cues for tension signaling at kinetochores remain elu-

sive. As an elongated microtubule-binder in the outer kinetochore,

the Ndc80 complex is a prime candidate to sense and signal tension.

One hypothesis is that microtubule-bound Ndc80 complexes
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undergo a tension-dependent conformational change from a bent to

a stretched state (the “jackknife” model) (Scarborough et al, 2019;

Roscioli et al, 2020). In turn, tension-dependent conformational

changes in the Ndc80 complex may control docking sites for

kinases, phosphatases, or additional microtubule binders. Ndc80

bending in the jackknife model has been proposed to require the

Ndc80 loop, a sequence in the NDC80 subunit that is long known to

interrupt the NDC80:NUF2 coiled coil (Wigge et al, 1998). Studies in

budding yeast, fission yeast, and humans demonstrated that the

Ndc80 loop is essential for the establishment of end-on kinetochore-

microtubule attachment and proper chromosome segregation (Hsu

& Toda, 2011; Maure et al, 2011; Zhang et al, 2012; Shrestha &

Draviam, 2013; Tang et al, 2013; Wimbish et al, 2020).

In human cells, a bioriented kinetochore contains approxi-

mately 250 copies of the Ndc80 complex (Suzuki et al, 2015) and

binds a bundle of approximately 10 microtubules, known as a k-

fiber (O’Toole et al, 2020; Kiewisz et al, 2022). Thus, a single

microtubule in the k-fiber binds multiple Ndc80 complexes

(Fig 1A). Reinforcing this prediction, single Ndc80 complexes fail

to bind to the ends of dynamic microtubules in vitro, but artificial

multimerization overcomes this and generates robust end-tracking

(Powers et al, 2009; Volkov et al, 2018), suggesting a crucial role

of Ndc80 multivalency. From a mechanistic perspective, however,

it remains unclear whether the acquisition of end-tracking reflects

the uncoordinated binding of multiple individual Ndc80 complexes

to the microtubule, or instead reflects additional cooperative inter-

actions between Ndc80 complexes elicited by microtubule binding.

The existing evidence for or against Ndc80 cooperativity is

conflicting. In the absence of microtubules, Ndc80 complexes

do not appear to form oligomeric structures (Huis in ’t Veld

et al, 2016), but clustering of Ndc80 complexes has been observed

along a microtubule lattice (Ciferri et al, 2008; Alushin et al, 2010,

2012). Neighboring Ndc80 complexes have been proposed to align

upon microtubule binding (Yoo et al, 2018; Roscioli et al, 2020),

thus suggesting that they interact laterally. Conversely, a modeling

study suggested that a “lawn” of non-interacting Ndc80 complexes

is ideally suited to generate robust microtubule binding (Zaytsev

et al, 2015).

Here we demonstrate that direct interactions between full-length

Ndc80 complexes on microtubules are essential for the formation of

stable kinetochore-microtubule attachments, both in a fully reconsti-

tuted system and in dividing cells. These interactions are perturbed

by deletion of the Ndc80 loop, and by point mutations therein. Our

study provides insight into the organization of Ndc80 complexes at

kinetochores attached end-on to microtubules, a structural model of

the Ndc80 loop, and a mechanistic explanation for impaired chro-

mosome congression in cells with Ndc80 loop mutants.

Results

The Ndc80 loop folds rigidly against NUF2 and NDC80

To gain structural understanding of Ndc80, we predicted the struc-

ture of full-length Ndc80 using AlphaFold-Multimer (preprint: Evans

et al, 2022; Fig 1B). Except for the unstructured tail of the NDC80

subunit, the structure of full-length Ndc80 showed high to very high

confidence scores (Fig EV1), thus accurately predicting the relative

positions of NDC80, NUF2, SPC25, and SPC24, including in the

tetramerization region in which the coiled coils of all four subunits

overlap (Fig EV1; Valverde et al, 2016). Very high confidence scores

were also attributed to the Ndc80 loop, a region comprising residues

421–450 of the NDC80 subunit and interrupting the long NDC80:

NUF2 coiled coil. In the predicted structure, the loop connects two

slightly staggered alpha-helices of NDC80, both of which pair with

the continuous NUF2 alpha-helix (Fig 1B). The loop makes multiple

turns, but does not bulge out freely from the helical axis of the com-

plex as previously speculated (e.g., Ciferri et al, 2008). Rather, con-

served amphipathic stretches pack closely and rigidly against the

NUF2 and NDC80 helices. We hypothesize that two strongly con-

served cysteine residues, NUF2C289 and NDC80C449, might further

stabilize this structure through a disulfide bond. The loop region

▸Figure 1. Structural analysis and loop-dependent clustering of Ndc80 on microtubules.

A Cartoon of a chromosome pair during mitosis with sister kinetochores that are attached (green) and unattached (red) to microtubules. Unattached kinetochores
trigger a spindle assembly checkpoint (SAC) signal. One outer kinetochore contains a lawn of Ndc80 complexes, resulting in many Ndc80 complexes binding to a
single microtubule.

B Prediction of the full-length Ndc80 structure with residues that comprise the tail, the hinge, the loop, and the tetramerization domain indicated. The box shows
the loop region at a 6× magnification. See Fig EV1 for more information.

C, D Low-angle Pt/C shadowing of Mis12:Ndc80 (panel C) and Mis12:Ndc80Dloop (D431–463) (panel D) complexes. The Mis12 complex appears as a 20 nm rod-like exten-
sion and marks the SPC24:SPC25 side of the Ndc80 complex.

E Size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) profiles of fluorescently labeled Ndc80 and Ndc80Dloop. Calculated (and theo-
retical) masses are indicated. See Appendix Fig S1 for more information.

F Total Internal Reflection Fluorescence (TIRF) microscopy was used to investigate Ndc80Alexa488 complexes on taxol-stabilized microtubules that were attached to a
passivated glass surface. Kymographs show Ndc80 complexes at a concentration of 0.2 nM with (FL, blue) or without (DL, orange) the loop. Scale bars: vertical
(5 lm), horizontal (5 s).

G Quantification of Ndc80 residence times for data as in panel (F). Solid line represents a single exponential fit.
H One-dimensional diffusion of Ndc80 complexes (with n indicated) on microtubules. Traces were split into segments of 0.5 s and averaged. Mean values (circles)

and SEM (shaded area) are shown.
I Distribution of the initial brightness of Ndc80 complexes on stabilized microtubules.
J Typical fields of view showing decoration of taxol-stabilized microtubules (cyan) incubated with full-length or loopless Ndc80 (yellow) at the indicated concentra-

tion. Images show an average projection of 200 frames. The contrast between individual fluorescent channels (inverted grayscale) was fixed. Auto-contrast was
used for the composite images to highlight the differences in the uniformity of Ndc80 decoration.

K Distribution of the brightness of Ndc80 complexes at indicated concentrations on taxol-stabilized microtubules.

Source data are available online for this figure.
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itself spans 30 residues in humans and other higher eukaryotes, but

exceeds 60 residues in other species, indicating remarkable variation

of composition and length.

The loop of some species, such as Candida albicans and Dictyos-

telium discoideum, contain low-complexity regions with stretches of

hydrophilic residues. Despite these remarkably divergent sequences,

the core folds of the predicted loop regions were comparable

(Fig EV2). Thus, the loop is unlikely to be a point of bending along

the Ndc80 coiled-coils. The bending is likely to happen in a promi-

nent hinge in the Ndc80 structure, predicted upstream from the loop

around residues NDC80359–362 and NUF2244–247 (Fig 1B). The hinge

is also conserved across eukaryotes and its position is in agreement

with micrographs of full-length Ndc80 complexes (Wang et al, 2008;

Huis in ’t Veld et al, 2016; Jenni & Harrison, 2018; Figs 1C and

EV2).

To investigate the functional and structural relevance of the loop,

we generated a recombinant human Ndc80 complex lacking NDC80

residues 431–463. Full-length and loopless Ndc80 complexes (in

complex with the Mis12 complex to mark one end) were indistin-

guishable in micrographs of rotary shadowed samples (Fig 1C and

D). While the hinge was a prominent point of bending, both com-

plexes displayed additional bending points along their length. SEC-

MALS and mass photometry further supported that full-length and

loopless Ndc80 complexes have comparable structural and biochem-

ical properties (Fig 1D, Appendix Fig S1A–C). Using DSBU, a cross-

linker that preferentially targets primary amines, but also reacts

with proximal hydroxyls, we identified 190 unique crosslinks by

mass spectrometry (Appendix Fig S2). Most crosslinks connect side-

chains that are less than 30 �A apart in our predicted structure and

are consistent with previous analyses (Maiolica et al, 2007;

Helgeson et al, 2018; Pan et al, 2018; Huis in ’t Veld et al, 2019).

High-scoring crosslinks are predominantly found near the tetrameri-

zation domain and the Ndc80 loop and provide experimental sup-

port for the structural prediction (Appendix Fig S4). The model of

the Ndc80 loop is in excellent agreement with the recently published

crystal structure of the human NDC80370–509:NUF2252–347 fragment

(Zahm et al, 2023).

Ndc80 complexes cluster on the microtubule lattice in a loop-
dependent manner

To test if the loop directly affects the binding of Ndc80 to microtu-

bules, we labeled recombinant full-length and loopless Ndc80 with

AlexaFluor488 using Sortase (Hirakawa et al, 2015) and studied their

binding to stabilized microtubules (Fig 1F). At sub-nanomolar con-

centrations (0.2 nM), full-length and loopless Ndc80 complexes typ-

ically resided on microtubules for 0.2–2 s with one-dimensional

diffusion (D) along the microtubule lattice of 0.10 and 0.09 lm2/s,

respectively (Fig 1G–I). These values are in agreement with previ-

ously reported values for truncated Ndc80 bonsai complexes

(Zaytsev et al, 2015) and budding yeast Ndc80 (Powers et al, 2009;

Scarborough et al, 2019).

Full-length and loopless Ndc80 complexes, however, bound

microtubules in distinct ways at higher concentrations. Specifically,

full-length Ndc80 formed clusters on the microtubule lattice

whereas loopless Ndc80 did not. The clusters increased from 3–6

Ndc80 complexes at 1.25 nM, to 5–10 complexes at 2 nM, and to

10–100 complexes at 6 nM (Fig 1J and K). Full-length Ndc80 thus

appears to bind microtubules preferably near sites already occupied

by Ndc80, presumably through interactions between adjacent

Ndc80 complexes. Since loopless Ndc80 binds uniformly along

microtubules, we conclude that clustering of Ndc80 complexes upon

microtubule binding requires an intact Ndc80 loop (Fig 1J and K).

The clustering of Ndc80 is strictly microtubule-dependent since nei-

ther full-length Ndc80 complexes nor a NDC80:NUF2 fragment

encompassing the loop form homotypic interactions in vitro in the

absence of microtubules although concentrations as high as 50 lM
(full-length) and 500 lM (loop fragment) were reached (Fig 1E,

Appendix Fig S3).

Loop-dependent coordination of Ndc80-microtubule binding

We previously used modules with three Ndc80 arms coupled to an

engineered streptavidin-derived scaffold to mimic the modular orga-

nization of Ndc80 in the outer kinetochore (Volkov et al, 2018; Huis

in ’t Veld et al, 2019). To understand the contribution of loop-

mediated Ndc80-Ndc80 interactions in this context, we generated

trimers of full-length and loopless Ndc80 and studied their interac-

tions with microtubules in vitro (Fig 2A and B, Appendix Fig S1D).

Full-length and loopless Ndc80 trimers resided stably on microtu-

bules with residence times ranging from minutes to hours (medians

of 1,000 and 200 s, respectively) (Fig 2C). Compared to the high dif-

fusion rates of individual Ndc80 complexes on microtubules

(Fig 1H), diffusion of a scaffold with three full-length Ndc80 com-

plexes was greatly reduced (D = 4.3 × 10�4 lm2/s), likely reflecting

the presence of multiple microtubule-binding elements in Ndc80 tri-

mers. Interestingly, the Ndc80 loop contributed significantly to this

reduction, because trimers of loopless Ndc80 diffused an order of

magnitude faster (D = 36 × 10�4 lm2/s) (Fig 2D and E). Despite

this difference, loopless Ndc80 trimers efficiently tracked the ends

of shortening microtubules and reduced microtubule depolymeriza-

tion rates, as previously observed for full-length Ndc80 trimers

(Fig 2F–I; Volkov et al, 2018; Huis in ’t Veld et al, 2019). Thus, dele-

tion of the Ndc80 loop reduced the stability of the interaction

between Ndc80 trimers and the microtubule lattice, but did not

grossly affect recognition of the microtubule plus end in the absence

of applied forces.

The loop is needed to stabilize end-on Ndc80-microtubule
interactions under force

Next, we set out to compare how full-length and loopless Ndc80

bind to the ends of shortening microtubules under force. We coated

biotinylated glass beads with Ndc80 trimers and moved them with

an optical tweezer to the lattice of a dynamic microtubule. When

the microtubule started to depolymerize, we measured the forces

exerted by the shortening end of the microtubule against the trapped

bead (Fig 3A). The microtubule-generated force typically increased

until it matched the opposing force generated by the displacement

of the bead from its rest position in the optical trap, a condition that

stalled microtubule shortening. Such stalls were either followed by

a detachment, or by a switch of the microtubule to a growing state

(rescue). Detached beads rapidly moved back to the center of the

trap. When a rescue allowed the bound microtubule to resume

growth, beads retaining attachment to the microtubule moved back

to the trap center much more gradually (Fig 3A).
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Full-length Ndc80 trimers often stalled microtubule depolymeri-

zation for seconds and rescued microtubule shortening in 17 out of

46 cases (37%) (Fig 3B), in agreement with our previous experi-

ments (Volkov et al, 2018; Huis in ’t Veld et al, 2019). By contrast,

beads coated with loopless Ndc80 trimers only rescued microtubule

shortening in 2 out of 44 cases (5%) and typically detached from

shortening microtubules after stalls that were shorter than 1 s

(Fig 3B). We showed previously that stalls of microtubule depoly-

merization that last at least 1 s are much more likely to rescue

microtubule shortening than shorter stalls, even with stall forces as

low as 1 pN (Huis in ’t Veld et al, 2019). This relation was also

clearly observed with the measurements reported here, as the

majority of stalls that led to rescues in presence of full-length Ndc80

lasted more than 1 s, whereas most stalls with loopless Ndc80 were

short and followed by a detachment (Fig 3B and C). Full-length

Ndc80 trimers bound to the biotinylated glass beads more efficiently

than loopless trimers, possibly because the loop-mediated Ndc80-

Ndc80 interactions described above facilitate coating. Nonetheless,

beads coated with high amounts of loopless Ndc80 also failed to effi-

ciently stall and rescue shortening microtubules (Appendix Fig S1E

and F). Taken together, our single-molecule studies suggest that

loop-mediated interactions coordinate Ndc80 complexes into a non-

Figure 2. The loop reduces diffusion of Ndc80 trimers without affecting their end-tracking.

A Preparation of TMR-labeled, streptavidin-mediated Ndc80 trimers. See Appendix Fig S1 for more information.
B–D TMR-labeled Ndc80 trimers with (FL, blue) or without (DL, orange) the loop were added to taxol-stabilized microtubules to measure their residence time (panel C)

and one-dimensional diffusion (panel D). Ndc80 trimers with and without the loop are shown. Scale bars: vertical (1,000 s), horizontal (5 lm).
E One-dimensional diffusion of Ndc80 trimers (with n indicated) on microtubules. Traces were split into segments of 60 s and averaged. Mean values (circles) and

SEM (shaded area) are shown.
F Kymographs of full-length and loopless Ndc80 trimers (10 pM) that reside on dynamically growing and shortening microtubules. Trimers remain bound to the ends

of shortening microtubules. Scale bars: vertical (100 s), horizontal (5 lm).
G Distribution of initial brightness of end-tracking Ndc80 trimers with full-length (blue) or loopless (orange) Ndc80.
H Fraction of Ndc80 trimers that switches from lateral microtubule binding to tracking shortening ends. Data from four repeats (total 140 events) for full-length

Ndc80 trimers (blue), and two repeats (total 158 events) for loopless Ndc80 trimers (orange). Horizontal lines indicate average values.
I End-tracking speed of full-length (blue) and loopless (orange) Ndc80 trimers that follow shortening microtubule ends. Compared to Ndc80-free shortening ends in

the same field of views (gray). Horizontal lines indicate median values.

Source data are available online for this figure.
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diffusive microtubule-binder that forms load-bearing attachments

with the ends of microtubules. Since a single kinetochore contains

many copies of Ndc80, the loop-mediated organization of adjacent

Ndc80 complexes might be important for the attachment of kineto-

chores to the dynamic microtubules of the mitotic spindle.

The Ndc80 loop is essential for proper chromosome congression

To investigate how the loop influences kinetochore-microtubule

interactions in mitotic cells, we electroporated recombinant Ndc80

complexes into HeLa cells stably expressing mCherry-H2B and

depleted of endogenous Ndc80 by RNAi. This approach directly

assesses if recombinant protein complexes support cell division

(Alex et al, 2019). We used live-cell imaging to follow fluorescently

labeled recombinant Ndc80 complexes 18 h after they were deliv-

ered into cells (Fig 4A). Endogenous Ndc80 complexes were effi-

ciently depleted upon exposure to a siRNA combination targeting

NDC80, SPC25, and SPC24 (Fig 4B). Depletion of Ndc80 ablated the

spindle assembly checkpoint (SAC) and caused cells to exit mitosis

in presence of the microtubule poison nocodazole, in line with pre-

vious work (Fig 4C; McCleland et al, 2003; Kim & Yu, 2015). When

recombinant full-length Ndc80 complexes were delivered into cells

depleted of endogenous Ndc80, they restored the cell cycle arrest in

nocodazole-treated cells (Fig 4C). These experiments demonstrate

the efficient depletion of endogenous Ndc80 and the functionality of

the electroporated recombinant Ndc80 complex.

Using this assay, we established that both full-length and loop-

less Ndc80 complexes were efficiently recruited to kinetochores in

cells that lack endogenous Ndc80 (Fig EV3A). Whereas full-length

recombinant complexes supported the timely formation of a meta-

phase plate and faithful cell division (Fig 4D, 3rd column), cells elec-

troporated with loopless complexes failed to congress their

chromosomes to the midplane and remained in a prometaphase-like

state without ever fully forming a recognizable metaphase plate

(Fig 4D, 4th column). Thus, the loop region is essential for chromo-

some alignment and bi-orientation, as previously shown (Zhang

et al, 2012; Shrestha & Draviam, 2013; Wimbish et al, 2020). In

agreement with these previous studies, cells with loopless Ndc80

complexes arrested in mitosis for many hours (Fig 4E). These results

indicate that cells recruiting the loopless Ndc80 mutant are impaired

in chromosome congression and bi-orientation, but sustain SAC

signaling.

Figure 3. The loop stabilizes end-on Ndc80-microtubule interactions under force.

A Schematic of the optical trap experiment and a typical force trace. A glass bead coated with full-length or loopless Ndc80 trimers is held in an optical trap near a
microtubule end. The displacement of the bead (left Y axis) and the corresponding force (right Y axis) are shown along and across the microtubules axis (black and
gray, respectively). Typical stages of an experiment (steps 1–8) are described.

B Correlations of stall duration and stall force. Each datapoint represents a single stall event. Filled squares: stalls resulting in microtubule rescue. Open squares: stalls
resulting in bead detachment from the microtubule.

C The frequency of rescue events after a stall is plotted for full-length (n = 46) and loopless (n = 44) Ndc80 after binning based on stall duration.

Source data are available online for this figure.
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To dissect the properties of the NDC80 loop in more detail, we

generated recombinant full-length Ndc80 complexes with residues of

the loop mutated into Alanine. A complex carrying the

NDC80G434A-Y435A mutations was insoluble, but 11 other complexes

were stable and purified to homogeneity. After adding a small fluo-

rescent dye to these complexes, we electroporated them into cells

depleted of endogenous Ndc80 complex (Fig 4E). Wild-type Ndc80

complexes and mutants 3, 4, and 7 supported chromosome congres-

sion and segregation similarly to wild-type Ndc80. Mutants 8, 9, and

11 also supported proper chromosome segregation, albeit often after

a prolonged phase of chromosome congression. By contrast, mutants

1, 2, 5, 6, and 10 phenocopied the prometaphase-like arrest observed

with the loopless Ndc80, indicating that these mutations profoundly

impair loop function (Fig 4E). The loop mutant NDC80D436A-F437A

(M5) phenocopied the deletion of the entire loop in a chromosome

alignment assay (Fig 4D, 5th column). Since a role of residues

NDC80436–439 in chromosome congression was also reported in a pre-

vious study (Wimbish et al, 2020; Fig EV3B), we chose to include

Ndc80-M5 for further analyses. The composition of the outer kineto-

chore, as assayed by quantifying the staining for components KNL1

and NSL1, was essentially identical in cells with Ndc80 full-length,

loopless, or M5. Furthermore, kinetochores with different Ndc80

mutants recruited comparable amounts of the SKA complex and SAC

components in the presence of nocodazole (Fig EV3C–I).

The M5 mutant phenocopies loopless Ndc80

To further test how the Ndc80 loop promotes kinetochore-

microtubule interactions in vivo, we exposed cells electroporated

with wild-type or mutated Ndc80 to a cold shock before fixation for

immunofluorescence microscopy (Fig 5A). Properly formed meta-

phase plates and cold-stable kinetochore-microtubule fibers were

observed in cells with wild-type Ndc80, but not in cells with loop

mutants (Fig 5A). The frequent observation of multipolar spindles

in cells with Ndc80 loop mutations further supports the idea that

the loop is required for stable kinetochore-microtubule interactions.

We therefore investigated the propensity of full-length and loopless

Ndc80 monomers and trimers to cluster on microtubules. Wild-type

Ndc80 monomers, at a concentration of 0.6 nM, interacted with

microtubules markedly longer when they colocalized with wild-type

Ndc80 trimers, suggesting an interaction that prolongs their resi-

dence on microtubules. Monomers of loopless Ndc80, on the other

hand, were indifferent to the presence of wild-type trimers and

resided on microtubules like wild-type monomers in the absence of

trimers (Fig EV4A and B).

We then analyzed the microtubule residency time of various combi-

nations of wild-type or mutant trimeric Ndc80TMR and monomeric

Ndc80Alexa488. Wild-type trimers bound wild-type monomers signifi-

cantly longer than M5 and loopless trimers (Fig 5B–D, compare condi-

tions 1–3). This fraction was further reduced for loopless monomers

recruited to wild-type trimers or to loopless trimers (Fig 5B–D, condi-

tions 4–5, and Fig EV4C). These experiments confirm that the Ndc80

loop directly contributes to Ndc80-Ndc80 interactions on microtubules

and that residues NDC80D436-F437 contribute significantly.

Loop-proximal Ndc80-Ndc80 crosslinking can rescue loop
deletion in vitro

Our experiments demonstrated that multivalent Ndc80 requires the

loop to form load-bearing attachments to microtubule-ends in vitro

◀ Figure 4. Mutation of critical residues in the loop impairs chromosome congression.

A Schematic of an electroporation experiment.
B Immunoblot of NDC80 levels following depletion of the Ndc80 complex by RNAi.
C Quantification of the time that cells spent in mitosis following various treatments. Each dot represents a cell and the red lines indicate median values. Nocodazole

was added 17 h after electroporation and 1 h before microscopy. A minimum of 30 cells were analyzed for each condition.
D Immunofluorescence microscopy of mitotic cells stained for DNA (DAPI), kinetochores (CREST), and Ndc80 complexes. The Ndc80 antibody (9G3) detects endogenous

Ndc80 (column 1) and electroporated recombinant Ndc80 (columns 3, 4, 5). Representative cells with a metaphase plate or uncongressed chromosomes are shown.
Scale bar: 5 lm.

E Overview of mutations in the Ndc80 loop region and the effects on the time spent in mitosis following the experimental setup outlined in panel (A). Colors indicate
whether cells divided normally, sometimes with delayed chromosome congression (green), or showed long arrests followed by a catastrophic division (orange). Each
dot represents a cell and the red lines indicate median values. Mutation NDC80G434A-Y435A did not support the formation of stable and soluble Ndc80 complexes. A
minimum of 30 cells were analyzed for each condition.

Source data are available online for this figure.

▸Figure 5. The M5 mutant phenocopies loopless Ndc80 in vivo and in vitro.

A Schematic of a cold-shock assay following an electroporation experiment. Immunofluorescence images showing the attachment status of kinetochores to microtu-
bules in cells electroporated with recombinant Ndc80-wt, Ndc80-ΔL, or Ndc80-M5 complexes. The number of cells with multipolar spindles and the total number of
analyzed cells are shown. Some signal from the tubulin channel is visible in the CENP-C channel. Scale bar: 5 lm.

B Total Internal Reflection Fluorescence (TIRF) microscopy was used to investigate Ndc80Alexa488 complexes (0.6 nM) added to trimeric Ndc80TMR (10 pM) on
fluorescent taxol-stabilized microtubules that were attached to a passivated glass surface. Typical kymographs showing virtually motionless Ndc80 trimers (magenta)
and transiently binding Ndc80 monomers (yellow). Wild-type (wt) monomers associate with wt trimers (left), but not with M5 trimers (right). Scale bars: vertical
(100 s), horizontal (5 lm).

C Quantification of the intensity of the monomeric Ndc80 associating with microtubule-bound trimeric Ndc80. A threshold for binding was set at an intensity equiva-
lent to one Alexa488 copy. Intensities well above 1 (yellow) could thus reflects multiple monomers binding simultaneously.

D Fraction of time there was at least one monomer (added to solution at a concentration of 0.6 nM) present at the microtubule-bound trimer (10 pM), tested in various
combinations of wild-type (wt), loopless (DL) and M5 monomers or trimers. All analyzed traces of Ndc80 trimers are shown (n = 42, 63, 33, 30, 34 for conditions 1–5).
Horizontal lines show median values and statistical significance was determined using a two-tailed Mann–Whitney test. P-values: 1 (wt-trimer + wt-monomer) vs. 2
(M5-trimer + wt-monomer): 7�10�7 (***); 2 vs. 3: 0.17 (n.s.); 1 vs. 3: 1�10�6 (***); 1 vs. 4: 3�10�15 (***); 3 vs. 4: 1�10�8 (***); 1 vs. 5: 1�10�13 (***); 4 vs. 5 0.23 (n.s.).

Source data are available online for this figure.
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and in vivo, presumably by clustering individual microtubule-

binding elements into a robust microtubule-binding unit. To test this

model further, we set out to crosslink Ndc80 arms artificially using

polyclonal antibodies that recognize short regions adjacent to or

directly in the loop (NDC80410–432/AB-849 and NDC80429–450/AB-

850, respectively) (Figs 6A and EV5A).

Figure 5.
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We first analyzed if antibodies altered the behavior of Ndc80

complexes on microtubules in vitro. Experiments with a fluores-

cently labeled secondary antibody confirmed that the loop-directed

antibodies bind Ndc80 trimers on microtubules (Fig 6B, Appendix

Fig S4). The addition of AB-849, which binds close to the loop

region, to loopless trimers greatly reduced their diffusion on micro-

tubules. Such an effect was not observed with AB-850, which does

not bind loopless Ndc80 (Fig 6C and D). Artificial Ndc80-Ndc80

crosslinking near the loop is thus sufficient to reduce the diffusion

of Ndc80 loop mutants on microtubules to wild-type levels in a fully

reconstituted system, further indicating that the loop contributes to

the cooperative binding of Ndc80 ensembles to microtubules. We

note however that co-electroporating AB-849 with Ndc80 loop

mutants did not restore chromosome congression in cells

(Fig EV5B–E), likely because the antibody does not recapitulate the

clustering process faithfully or because it prevents further matura-

tion of the attachment. AB-849 also partly impaired SAC signaling,

in particular when used in combination with loop mutants. How-

ever, we could not recapitulate this effect by mutating key residues

in the AB-849 epitope (M15–M20) (Fig EV5E).

Figure 6. Loop-proximal Ndc80-Ndc80 crosslinking rescues increased diffusivity of loopless Ndc80 trimers.

A Representation of the peptides used to raise AB-849 and AB-850 and immunoblots showing their recognition of wild-type, M5 and loopless Ndc80 complexes. 9G3 is a
commercially available monoclonal antibody raised against NDC8056–642, later shown to recognize NDC80200–215. Asterisk shows the non-specific recognition of
another protein, presumably NUF2.

B Diffusion of full-length and loopless Ndc80 trimers in absence and presence of AB-849. The primary rabbit polyclonal AB-849 was detected using a Alexa650-labeled
anti-rabbit secondary IgG antibody. Scale bars: vertical (100 s), horizontal (5 lm).

C One-dimensional diffusion of full-length (blue), loopless (orange), and M5 (black) Ndc80 trimers in presence and absence of AB-849 and AB-850 as described in panel
(B) (see Appendix Fig S4 for more information). Traces of Ndc80 trimers (with n indicated in the legend for panel D) on microtubules were analyzed. Traces were split
into segments of 60 s and averaged (see Materials and Methods). Mean (circles) and SEM (shaded areas) values are shown. We note that the omission of reducing
agents, a precondition to use the antibody as a crosslinker, slightly decreased the overall diffusion of Ndc80-modules on microtubules (compare with Fig 2E).

D Summary showing diffusion coefficients (lm2/min) that follow from the data shown in panel (C). Mean values, SEM, and number of diffusion traces (n) are indicated.
Statistically significant differences were determined using a two-tailed t-test. P-values: no AB, FL vs. DL: 0.0180 (*); DL, no AB vs. AB-849: 0.0108 (*); M5, no AB vs. AB-
849: 0.0458 (*); DL, AB849 vs. AB-850: 0.0156 (*); AB-850, DL vs. FL: 0.0461 (*); AB-850, DL vs. M5: 0.0494 (*).

Source data are available online for this figure.
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Loop-mediated mitotic arrest involves multiple phospho-
signaling pathways

To prevent chromosome mis-segregation, a dividing cell needs to

destabilize occasional syntelic and merotelic kinetochore-microtubule

misattachments. This error correction process requires Aurora B, a

kinase with multiple substrates in the kinetochore (Lampson & Grish-

chuk, 2017). The 80-residue unstructured N-terminal tail of the

NDC80 subunit includes several serine and threonine residues whose

phosphorylation by Aurora B renders kinetochore-microtubule attach-

ment reversible and is critical for error correction (Krenn & Musac-

chio, 2015). Inhibition of multi-site phosphorylation of the Ndc80 tail

results in hyperstable kinetochore-microtubule attachments (DeLuca

et al, 2006; Guimaraes et al, 2008).

We asked if preventing phosphorylation of the NDC80 tail had

the potential to override the mitotic arrest caused by mutations in

the loop region. We therefore combined nine Alanine (9A) muta-

tions in the tail (preventing its phosphorylation) with either loopless

or M5 mutants. Although combining the 9A Ndc80 tail with loop

mutants reduced the duration of the mitotic arrest (Fig 7, compare

conditions 10 with 13 and 16 with 19), cells arrested nonetheless for

several hours. Thus, artificially stabilizing microtubule attachment

by preventing phosphorylation of the Ndc80 did not bypass the

spindle assembly checkpoint arrest caused by tampering with the

Ndc80 loop. This suggests that Ndc80 clustering has a more funda-

mental role in establishing stable connections with microtubules,

possibly one that precedes an assessment of the quality of the

attachment by the error correction pathway.

To test this hypothesis further, we exposed cells with mutations

in the Ndc80 tail and/or loop to inhibitors of the mitotic kinases

Aurora B and Mps1 (Krenn & Musacchio, 2015; Saurin, 2018). As

expected, the addition of Hesperadin, a small molecule inhibitor of

Aurora B kinase (Hauf et al, 2003), shortened mitotic arrest in cells

electroporated with Ndc80 loop mutants (Fig 7, compare conditions

10 with 11 and 16 with 17). This shortening was much more evident

than that caused by the Ndc80 9A error correction mutant,

suggesting partial SAC abrogation, in addition to overriding the

error correction pathway. This interpretation was corroborated by

testing the effects of Reversine, a specific and potent inhibitor of the

SAC kinase MPS1 (Santaguida et al, 2010). Reversine dramatically

shortened the time that loop-deficient cells spent in mitosis (Fig 7,

conditions 12 and 18). This effect was exacerbated by the 9A muta-

tion, likely because the enhanced microtubule binding by this

mutant further facilitated checkpoint overriding by Reversine (Fig 7,

compare conditions 12 with 15 and 18 with 21). This result confirms

that hyperstabilization of kinetochore-microtubule interactions with

a Ndc80 tail mutant does not silence (or satisfy) the SAC, as previ-

ously suggested (Etemad et al, 2015; Tauchman et al, 2015), but

rather contributes to its overriding.

NDC80 D436 and E438 promote Ndc80-Ndc80 interactions and
chromosome congression

The loop mutant M5 that by and large phenocopied the deletion of

the entire loop is mutated at NDC80 D436 and F437. The side chains

of these adjacent residues point in opposite directions: the acidic

D436 is solvent accessible whereas F437 contributes to the hydro-

phobic core of the loop (this study and Zahm et al, 2023). A similar

pattern is observed in loop mutant M6, mutated at residues E438

and I439. To unravel if buried hydrophobic (F437 and I439) or

exposed acidic residues (E436 and D438) are required for mitotic

fidelity, we generated two new mutants. Whereas cells with

Ndc80F437A-I439A (M14) congressed their chromosomes and divided

successfully, cells with Ndc80D436A-E438A (M13) did not (Fig 8A).

We next tested if the ability of Ndc80 mutants to support chro-

mosome congression correlates with their loop-dependent propen-

sity to cluster on the microtubule lattice at low nanomolar

concentrations in a reconstituted system (Fig 1). Out of eight differ-

ent Ndc80 complexes, all purified to homogeneity and not showing

clustering in solution at concentrations up to 50 lM, only mutants

ΔLoop, M13 and, to a lesser extent, M5, did not cluster on the

microtubule lattice. This experiment demonstrated the correlation

between homotypic Ndc80-Ndc80 clustering on microtubules and

stable kinetochore-microtubule interaction during mitosis and

highlighted a contribution of the loop’s acidic patch formed by D436

and E438 (Fig 8A, Appendix Fig S5).

Discussion

The loop region of the NDC80 subunit was previously identified for

its essential role in the establishment of load-bearing interactions

between kinetochores and microtubule ends required for chromo-

some congression (Maure et al, 2011; Shrestha & Draviam, 2013).

Our finding in a minimally reconstituted system that the loop is dis-

pensable for microtubule end-tracking in the absence of force, but

crucial to stall and rescue microtubule shortening under force, sup-

ports this view (compare Figs 2H and I, and 3B). At a mechanistic

level, however, the function of the loop has remained elusive and

partly controversial, as discussed below. We reconstituted the inter-

action between microtubule ends and Ndc80 complexes and demon-

strate that the loop is crucial to generate force-resistant attachments.

Loop-dependent clustering of Ndc80 complexes requires binding to

microtubules: full-length Ndc80 complexes are stable monomeric

complexes in solution at concentrations as high as 50 lM (~10 mg/

ml) but cluster on microtubules at concentrations as low as

0.005 lM (Figs 1 and 8B). This suggests that the effects of loop-

mediated low affinity homotypic Ndc80-Ndc80 interactions that only

become manifest after microtubule binding. In this model, Ndc80

complexes (i) multimerize on their kinetochore receptors CENP-T

and Mis12, (ii) align their CH-domains and tails on a microtubule,

and (iii) stabilize this arrangement cooperatively through loop-

mediated homotypic interactions (model in Fig 8C and D). Although

our structural analysis provides insight into the folding of the Ndc80

loop, a molecular explanation for loop-dependent clustering of

Ndc80 complexes on microtubules is lacking. Since point mutations

phenocopy deletion of the loop both in dividing cells and in a recon-

stituted system, it appears likely that the loop of a microtubule-

bound Ndc80 complex directly binds an adjacent Ndc80 complex at

a hitherto unidentified site.

The unstructured N-terminal tail of the NDC80 subunit, encom-

passing the protein’s first 80 residues, plays an important role in the

coordinated binding of Ndc80 to the ends of dynamic microtubules

in vivo and in vitro (Cheeseman et al, 2006; DeLuca et al, 2006,

2011, 2018; Guimaraes et al, 2008; Miller et al, 2008; Zhu

et al, 2013; Long et al, 2017; Shrestha et al, 2017; Helgeson
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et al, 2018; Huis in ’t Veld et al, 2019; Wimbish et al, 2020;

Kucharski et al, 2022). We suggest that the Ndc80 tail and loop con-

tribute to the establishment of tension-resistant kinetochore-

microtubule attachments in a synergistic manner: the tails by coor-

dinating the direct binding of Ndc80 complexes to the end of micro-

tubules and the loops by stabilizing Ndc80 clusters at a distance

from the microtubule-binding site (model in Fig 8C). Cooperative

microtubule binding of Ndc80 assisted by the Ndc80 tail has been

demonstrated previously (Ciferri et al, 2008; Alushin et al, 2010,

2012; Janczyk et al, 2017). Notably, these studies were performed

with a truncated version of the Ndc80 complex, Ndc80-bonsai, that

lacks the loop and almost the entire coiled-coil stalk of the complex,

and using Ndc80-bonsai concentrations in the low lM range. In con-

trast, we observe clustering on microtubules of full-length Ndc80

complexes at low nM concentrations. At similarly low concentra-

tions, Ndc80-bonsai (with or without mutations in the tail) binds

microtubules in a non-cooperative manner (Zaytsev et al, 2015).

A challenge of any reconstituted system is that it may fall short

of reproducing all the layers of regulation that contribute to a biolog-

ical process. With this limitation in mind, we nevertheless formulate

a hypothesis on the coordination of molecular events that mark the

process of bi-orientation. Based on our findings, we surmise that

force-resistant microtubule binding by Ndc80 complexes, at its

kinetochore concentration or at a realistically low concentration

in vitro, requires (i) the deployment of Ndc80 loops to trigger local

clustering and (ii) the deployment of Ndc80 tails at the end of the

microtubule, facilitated by their dephosphorylation (Fig 8D). This

model predicts that the Ndc80 complexes are oriented as parallel

“pillars”, compatible with the high nematic order observed for

Ndc80 in vivo (Roscioli et al, 2020). The model may also explain

why hyperstabilization of kinetochore-microtubule interactions with

a non-phosphorylatable version of the Ndc80 tail cannot rescue the

dramatic effects on bi-orientation caused by deletion of the loop: N-

terminal tails may be insufficient for clustering and coordinated

microtubule binding when the loop is absent. A question for future

work is how many adjacent CH-domains and tails are required to

generate a robust end-on microtubule attachment. Furthermore, our

AF2 predictions and structural analyses suggest that additional con-

served elements of the Ndc80 complex may contribute to successful

bi-orientation. Most notably, and as previously observed in micro-

graphs and in predictions, there is a prominent disruption of the

coiled-coil between the microtubule-binding region and the loop of

Ndc80 (Fig 1B and C; Jenni & Harrison, 2018; Zahm et al, 2023). We

propose to name this conserved element, encompassing NDC80359–

362 and NUF2244–247 in humans, the Ndc80 hinge. How the hinge

contributes to Ndc80-microtubule binding and chromosome
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Figure 7. Synergistic contributions of the Ndc80 loop and tail to kinetochore-microtubule binding and SAC silencing.

Experimental workflow to investigate the time that cells, electroporated with recombinant Ndc80 complexes, spent in mitosis in the presence and absence of mitotic
kinases inhibitors. Every dot represents a cell and red lines indicate median values. At least 30 cells were analyzed for each condition.
Source data are available online for this figure.
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biorientation remains to be addressed. Our analysis, however, indi-

cates that the hinge, not the loop, is the likely primary site of bend-

ing in the first half of the Ndc80 shaft.

Importantly, the establishment of force-bearing kinetochore-

microtubule attachments in vivo requires, in addition to the Ndc80

complex, additional microtubule binders, including the SKA and

SKAP/Astrin complexes (Monda & Cheeseman, 2018). It is therefore

possible that Ndc80 multivalency, in addition to having a direct

effect on microtubule binding, also controls the interaction with

these additional linkages. Indeed, a crucial role of the loop in

kinetochore-microtubule attachment was previously demonstrated

in a range of organisms (Hsu & Toda, 2011; Maure et al, 2011;

Varma et al, 2012; Zhang et al, 2012; Shrestha & Draviam, 2013;

Tang et al, 2013; Scarborough et al, 2019; Wimbish et al, 2020).

These studies postulated that the loop promotes stable kinetochore-

microtubule attachment through the direct binding of microtubule

binding proteins such as the Ska complex, CH-TOG/Stu2, or Cdt1

(Hsu & Toda, 2011; Varma et al, 2012; Zhang et al, 2012, 2017; Tang

et al, 2013). Subsequent studies, however, questioned the notion

that the loop is directly involved in these physical interactions. For

instance, recruitment of Dam1 to Ndc80 complexes in budding yeast

appears to require the Ndc80 loop in vivo, but not in vitro (Maure

et al, 2011; Lampert et al, 2013; Jenni & Harrison, 2018). Similarly,

the recruitment of the Ska complex to kinetochores requires the

Ndc80 loop and the Ndc80 tail in vivo (Zhang et al, 2012; Janczyk

et al, 2017), but Ska and Ndc80 form a stable stoichiometric com-

plex in vitro in a loop- and tail-independent manner, at least at

micromolar concentration (Huis in ’t Veld et al, 2019). Thus, lack of

recruitment of certain downstream proteins to kinetochores with

mutated Ndc80 loops might not reflect a direct role of the loop in

these recruitments, but rather that the Ndc80 clusters assembled

through the loop are stronger binding platforms for these proteins

than the isolated Ndc80 complexes. This possibly reflects preferred

interactions of Ndc80 clusters on microtubules with other multi-

mers, such as the Ska and Dam1 complexes. In the future, we will

ascertain the validity of this hypothesis and test why the late recruit-

ment of certain protein to the kinetochore requires an intact loop.

Mutation of the loop increases the diffusion of Ndc80 on microtu-

bules. Interactions between loopless Ndc80 complexes, induced

with an antibody that binds near the loop, reduced the diffusion of

loopless Ndc80 trimers (Fig 6). This demonstrates that the binding

between adjacent Ndc80 complexes increases the grip to the micro-

tubule lattice. Disturbing the diffusion of Ndc80 ensembles on

microtubules might hinder proper chromosome congression and
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Figure 8. NDC80 D436 and E438 promote Ndc80 clustering on microtubules and chromosome congression.

A Effects of M13 and M14 on the time spent in mitosis following the experimental setup outlined in Fig 4. All other datapoints are also shown in Fig 4E. Colors indicate
whether cells divided normally, sometimes with delayed chromosome congression (green), or showed long arrests followed by a catastrophic division (orange). Each
dot represents a cell and the red lines indicate median values. A minimum of 30 cells were analyzed for each condition.

B In an assay as presented in Fig 1, non-uniform Ndc80 distributions result in a high standard deviation (SD) of Ndc80 fluorescence along a microtubule, indicating
clustering. See Appendix Fig S5 for more information.

C A model for the synergistic contributions of the Ndc80 loop and the Ndc80 tail to robust kinetochore-microtubule attachments.
D A schematic representation of loop-mediated interactions that stabilize Ndc80-Ndc80 interactions when Ndc80 complexes align following their anchoring on multi-

valent receptors at both ends.

Source data are available online for this figure.
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end-on microtubule binding in cells. In agreement with this idea,

the electroporation of antibody:Ndc80 mixtures into cells interfered

with chromosome congression and checkpoint signaling (Fig EV5).

These results are consistent with classic studies demonstrating that

(i) antibodies against NDC80 or NUF2 injected into Xenopus cells

resulted in a mitotic arrest and chromosome congression failure

(McCleland et al, 2003) and (ii) a monoclonal antibody (9G3, raised

against GST-NDC8056–642, later shown to recognize NDC80200–215)

interfered with mitosis by hyperstabilizing kinetochore-microtubule

connections (Chen et al, 1997; DeLuca et al, 2006). Interestingly, we

found that the 9G3 antibody binds microtubules in vitro, preventing

the analysis of its influence on the diffusion of Ndc80 trimers

(Appendix Fig S4).

The kinetochore-microtubule interface consists of dozens of pro-

teins and protein complexes, all present in multiple copies. Under-

standing how these proteins control the attachments of

chromosomes to the mitotic spindle and link this attachment state

to cell cycle progression is a formidable challenge. In this study, we

investigated how a short loop sequence in the outer kinetochore

Ndc80 complex coordinates the formation of stable end-on

kinetochore-microtubule attachments that support chromosome

congression and bi-orientation. To unravel the multifaceted roles of

the loop, we identified and tested separation-of-function mutants

under the controlled conditions of a fully reconstituted system and

in the presence of additional proteins and regulatory pathways in

cells. In the future, our approach can provide molecular and mecha-

nistic insight into other central aspects of kinetochore biology, such

as the transition from a lateral to an end-on attachment, the role that

other microtubule binders play, and the intricate feedback loops that

control kinetochore-microtubule binding.

Materials and Methods

Molecular modeling

The version AF2 Multimer 2 (preprint: Evans et al, 2022) of Alpha-

Fold 2 (AF2) was used for all molecular modeling. Compared to the

original AF2 (Jumper et al, 2021), AF2 Multimer is more sensitive to

intra- and intermolecular interactions, resulting in a tendency to col-

lapse extended proteins, for example, long coiled-coil regions, into

more compact structures. To avoid this, sub-fragments with over-

lapping regions were modeled separately and then stitched together.

Fragment length was a compromise between “long and bending”

and “short with dissociated coiled coils at the ends”. Several differ-

ent regions were predicted and analyzed, and we selected the lon-

gest possible fragments that did not bend. Three segments with

overlapping regions were stitched together: (i) NDC80 81–401 |

NUF2 1–283, (ii) NDC80 318–522 | NUF2 205–359, and (iii) NDC80

507–642 | NUF2 344–464. Models were then superimposed on their

overlapping parts using PyMOL (The PyMOL Molecular Graphics

System, version 2.5.2 Schrödinger, LLC.) and a residue in the mid-

dle of the best-fitting regions was chosen as fragment boundary.

The final model was comprised of (i) NDC80 81–382 | NUF2 1–267,

(ii) NDC80 383–511 | NUF2 268–351, and (iii) NDC80 512–642 |

NUF2 352–464 (Appendix Fig S1). The ends of the fragments tend to

have higher pLDDT scores, which is expected due to the truncated

multiple sequence alignment that is then used by AF2. The

geometry at the stitching points was checked and optimized with

COOT (Emsley & Cowtan, 2004), followed by a minimization of the

complete model with PHENIX (Liebschner et al, 2019). Backbone

restraints were applied to conserve the AF2-predicted backbone

positions. In the final model, 98% of the residues had pLDDT scores

above 80 (high confidence) and 84% of the residues had scores

above 90 (very high confidence) (Fig EV1). Corroborating the high

quality of the model, the predicted alignment error (PAE) plots con-

sistently indicated well-defined relative positions of the monomers,

including the tetramerization domain that is composed of SPC24,

SPC25, and the C-termini of NDC80 and NUF2 (Fig EV1). Omitting

the structural template for the yeast tetramerization domain (PDB

ID 5TCS) (Valverde et al, 2016) from the AF2 database did not

change the prediction for the human tetramerization domain.

The loop region of NDC80 (residues 422–458) was predicted very

reproducibly, whereas the angle of the hinge (residues 358–363 in

NDC80 and 243–248 in NUF2) varied between 109° and 131° in vari-

ous predictions. In addition, some predictions showed up to 15° lat-

eral deviation of the coiled-coil axes perpendicular to the plane of

the triangle. It is unclear if this is a bona fide property of the Ndc80

complex, but it is interesting that AF2 reproduces the observation of

the hinge-like region of the Ndc80 at a distance of approximately

180–210 �A (� 30 residues) from the globular, N-terminal NDC80/

NUF2 domains (Huis in ’t Veld et al, 2016; Jenni & Harrison, 2018),

which corresponds well with the position of the predicted kink resi-

dues (358–363 in NDC80 and 243–248 in NUF2) in our model

(approximate distance from N-terminus 170–200 �A).

To compare the evolutionary conservation of the loop region,

NDC80 sequences from 33 diverse eukaryotic organisms were

selected (Boeckmann et al, 2015) and aligned and visualized using

ProViz (Jehl et al, 2016) and jalview (Waterhouse et al, 2009;

Fig EV2). The phylogenetic tree was generated using ITOL (Letunic

& Bork, 2021) and structures were predicted using AF2 as described

above (Fig EV2). All figures were made using ChimeraX (v1.2 and

daily builds) (Goddard et al, 2018).

Cloning, expression, and purification of Ndc80

Expression cassettes from pLIB vectors containing NDC80, NUF2,

SPC25SORT-HIS, and SPC24 were combined on a pBIG1 vector using

Gibson assembly as described (Weissmann et al, 2016; Volkov

et al, 2018). Baculoviruses were generated in Sf9 insect cells and

used for protein expression in Tnao38 insect cells. Between 60 and

72 h post-infection, cells were washed in PBS and stored at �80°C.

All subsequent steps were performed on ice or at 4°C. Cells were

thawed and resuspended in lysis buffer (50 mM HEPES, pH 8.0, 200

or 250 mM NaCl, 10% v/v glycerol, 2 mM TCEP, 20 mM imidazole,

0.5 mM PMSF, protease-inhibitor mix HP Plus (Serva)), lysed by

sonication and cleared by centrifugation at 108,000 g for 60 min.

The cleared lysate was filtered (0.8 lM) and applied to a 10 or

20 ml HisTrap FF (GE Healthcare) equilibrated in washing buffer

(lysis buffer without protease inhibitors). The column was washed

with approximately 20 column volumes of washing buffer and

bound proteins were eluted with elution buffer (washing buffer

containing 300 mM imidazole). Relevant fractions were pooled,

diluted 5-fold with buffer A (50 mM HEPES, pH 8.0, 25 mM NaCl,

5% v/v glycerol, 1 mM EDTA, 2 mM TCEP) and applied to a 25 ml

Source15Q (GE Healthcare) strong anion exchange column
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equilibrated in buffer A. After washing with approximately 20 col-

umn volumes, bound proteins were eluted with a linear gradient

from 25 to 300 mM NaCl in 180 ml. Relevant fractions were concen-

trated in 50 kDa molecular mass cut-off Amicon concentrators

(Millipore). Complexes were then fluorescently labeled (see next

section) or directly applied to a Superdex 200 16/600 increase, a

Superose 6 10/300 increase, or a Superose 6 prep grade XK 16/600

column (GE Healthcare). Columns were equilibrated in Ndc80

buffer (50 mM HEPES, pH 8.0, 250 mM NaCl, 5% v/v glycerol,

2 mM TCEP) and size-exclusion chromatography was performed

under isocratic conditions at recommended flow rates. Relevant

fractions were pooled, concentrated, flash-frozen in liquid nitrogen,

and stored at �80°C.

GST-NDC80376–517 and NUF2258–356 were cloned in a pGEX-6P-

2rbs vector and expressed in E. coli. BL21(DE3)-Codon-plus-RIPL in

Terrific Broth in the presence of Chloramphenicol and Ampicillin

and 1% Glucose, 0.01% Lactose, and 2 mM MgSO4 for ~24 h at

25°C. Cells were thawed and resuspended in lysis buffer (50 mM

HEPES, pH 7.5, 250 mM NaCl, 10% v/v glycerol, 2 mM TCEP,

0.5 mM PMSF, protease-inhibitor mix HP Plus (Serva)), lysed by

sonication and cleared by centrifugation at 75,600 or 108,000 g for

45 min. The cleared lysate was bound to Glutathione-Agarose resin

(5 ml resin for 1 l expression culture) equilibrated in washing buffer

(lysis buffer without protease inhibitors). The beads were washed

extensively and protein was cleaved of the beads by overnight

cleavage with 3C-PreScission protease (generated in-house) or

eluted in washing buffer + 10 mM glutathione. The eluate was con-

centrated using 10 kDa molecular mass cut-off Amicon concentra-

tors (Millipore) and applied to a Superdex 75 10/600 column (GE

Healthcare) equilibrated in 50 mM HEPES, pH 8.0, 250 mM NaCl,

2 mM TCEP, 5% v/v glycerol. Relevant fractions were pooled, con-

centrated, flash-frozen in liquid nitrogen, and stored at �80°C.

Fluorescent labeling of Ndc80

The calcium-independent Sortase 7M (Hirakawa et al, 2015) was

used for the C-terminal conjugation of a synthetic peptide to SPC25.

Various synthetic peptides (Genscript) were used for this purpose:

GGGGKFAM, GGGGKTMR, and GGGGCAlexa-488. Reactions were

performed at 10°C for 4–16 h in Ndc80 buffer with Sortase:Ndc80:

Peptide ratios of approximately 1:5:25 with Ndc80 in the 10–20 lM
range. The NDC80:NUF2 loop fragment was labeled at its N-

terminal following 3C-cleavage using Sortase and FAMLPETGG in a

similar manner. Fluorescently labeled complexes were purified

using size-exclusion chromatography, as described above.

Assembly of Ndc80 trimers

Ndc80 complexes were coupled to streptavidin-derived T1S3 scaf-

folds as described (Volkov et al, 2018; Appendix Fig S1). In brief,

T1S3 scaffolds were assembled from core traptavidin (T; addgene

plasmid #26054) and Dead Streptavidin-SpyCatcher (S; addgene

plasmid #59547) (Chivers et al, 2010; Fairhead et al, 2014). T1S3
scaffolds were incubated with an approximate 10-fold molar excess

of Ndc80 for 12–20 h at 10°C in the presence of PMSF (1 mM) and

protease inhibitor mix (Serva). Sortase labeling was achieved in the

same reaction, as described above. Reaction mixtures were applied

to a Superose 6 increase 10/300 column (GE Healthcare)

equilibrated in 20 mM TRIS pH 8.0, 200 mM NaCl, 2% v/v glycerol,

2 mM TCEP. Size-exclusion chromatography was performed at 4°C

under isocratic conditions at recommended flow rates and the rele-

vant fractions were pooled and concentrated using 30 kDa molecu-

lar mass cut-off Amicon concentrators (Millipore), flash-frozen in

liquid nitrogen, and stored at �80°C.

SEC-MALS and mass photometry

Full-length and loopless Ndc80 complexes were analyzed by SEC-

MALS on a Dawn Heleos II System with an Optilab T-rEX RI detector

(Wyatt) and a 1260 Infinity II LC system (Agilent). The Superose 6

increase 10/300 column (GE Healthcare) was pre-equilibrated with

glycerol-free Ndc80 buffer (50 mM HEPES pH 8.0, 250 mM NaCl,

and 2 mM TCEP). Analysis was performed at room temperature

with 60 ll full-length or loopless Ndc80 complex that was diluted in

running buffer to 2 mg/ml. Mass photometry was performed on a

Refeyn TwoMP System (Refeyn) that was calibrated with a mixture

of BSA (66.5 and 123 kDa) and Thyroglobulin (330 and 660 kDa).

Ndc80 complexes were diluted to a concentration of 100 nM in

glycerol-free Ndc80 buffer and analyzed in 20 lL droplets following

a 10-fold dilution in buffer to 10 nM. Data were analyzed and plot-

ted using the DiscoverMP software (Refeyn).

Crosslinking and mass spectrometry

Two hundred microliter of full-length Ndc80, loopless Ndc80, and

their complexes with the Mis12 complex were prepared at 7.5 lM in

crosslinking buffer (50 mM HEPES pH 8, 250 mM NaCl, 5% v/v

glycerol, and 2 mM TCEP), crosslinked with an approximate 500-

fold molar excess of DSBU (3.75 mM), and quenched with TRIS

(100 mM) as described in Appendix Fig S2. Samples were prepared

for mass spectrometry and analyzed using MeroX (version 2.0.1.4)

as previously described (Arlt et al, 2016; Pan et al, 2018). Crosslinks

were inspected in XiView (preprint: Graham et al, 2019) and, after

setting a false-discovery rate to 1%, ranked according to the number

of matched peptides and the maximum score. Unique intra- and

intermolecular Ndc80 crosslinks from all four datasets were identi-

fied. To distinguish frequently observed and more rarely observed

crosslinked peptides, the rank was used to divide the dataset, at an

arbitrary cut-off, in two parts. All crosslinks were displayed on the

predicted structure of full-length Ndc80 and Ca-Ca distances were

plotted using ChimeraX (daily build) (Goddard et al, 2018).

Low-angle metal shadowing and electron microscopy

Full-length and loopless Ndc80 complexes (10 lM) were incubated

with full-length Mis12 complexes (15 lM) for approximately 1 h on

ice. Mixtures were diluted 1:9 with Ndc80 buffer, diluted 1:1 with

spraying buffer (200 mM ammonium acetate and 60% glycerol), and

then air-sprayed onto freshly cleaved mica (V1 quality, Plano GmbH)

of approximately 2 × 3 mm. Specimens were mounted and dried in a

MED020 high-vacuum metal coater (Bal-tec). A Platinum layer of

approximately 1 nm and a 7 nm Carbon support layer were evapo-

rated subsequently onto the rotating specimen at angles of 6–7° and

45° respectively. Pt/C replicas were released from the mica on water,

captured by freshly glow-discharged 400-mesh Pd/Cu grids (Plano

GmbH), and visualized using a LaB6 equipped JEM-400 transmission
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electron microscope (JEOL) operated at 120 kV. Images were

recorded at a nominal magnification of 60,000× on a 4 k × 4 k CCD

camera F416 (TVIPS), resulting in 0.1890 nm per pixel. Particles

were manually selected using EMAN2 (Tang et al, 2007).

Tubulin and microtubules

Pig brain tubulin, as well as TMR- and HiLyte488-labeled tubulin,

were purchased from a commercial source (Cytoskeleton Inc). DIG-

tubulin was made in-house by labeling microtubules polymerized

from commercial tubulin with an NHS-ester (Sigma Aldrich) of

digoxigenin according to published protocols (Hyman et al, 1991).

GMPCPP-stabilized seeds were made by two rounds of polymeriza-

tion at 37°C in presence of 1 mM GMPCPP and 25 lM tubulin (40%

DIG-labeled). Seeds were sedimented in a Beckman Airfuge at

126,000 g for 5 min. After the second polymerization round, the

seeds were resuspended in MRB80 buffer (80 mM K-Pipes pH 6.9,

1 mM EGTA, 4 mM MgCl2) supplemented with 10% glycerol and

aliquots were flash-frozen in LN2.

To prepare taxol-stabilized microtubules, 70 lM tubulin (with or

without DIG- and fluorescent labels) was polymerized in presence

of 25% glycerol and 1 mM GTP for 10 min at 37°C, and then stabi-

lized by an addition of 25 lM taxol followed by a 20 min incuba-

tion. Microtubules were sedimented in a Beckman Airfuge at

32,000 g for 3 min, resuspended in MRB80 buffer supplemented

with 40 lM taxol and stored at 25°C for up to 3 days.

Preparation of flow chambers and TIRF microscopy

Microscopy chambers were prepared using slides and coverslips

treated with oxygen plasma and immediately silanized with a mix-

ture of 2% dichlorodimethyl silane and 98% octamethylcyclooctasi-

lane for 5 min (Gell et al, 2010; Maleki et al, 2023). Before an

experiment, antibodies against DIG (Roche 11333089001) or tubulin

(TU-20, Abcam) were adsorbed to the silanized glass, followed by a

passivation with 1% Pluronic F-127 in MRB80. Taxol-stabilized

microtubules were diluted in approximately 5–7 chamber volumes

of MRB80 with 10 lM taxol, washed in within 3 min, and immedi-

ately washed out with three-chamber volumes of MRB80 with

10 lM taxol to produce microtubules mostly oriented along the

chamber. Subsequently, proteins of interest were introduced into

the chamber in imaging buffer containing MRB80, 0.1% methylcel-

lulose, 40 lM taxol, 1 mg/ml j-casein, 4 mM DTT, 0.2 mg/ml cata-

lase, 0.4 mg/ml glucose oxidase and 20 mM glucose. Imaging buffer

was pre-cleared in a Beckman Airfuge for 5 min at 126,000 g before

the addition of Ndc80 or antibodies.

For experiments with dynamic microtubules, DIG-labeled

GMPCPP-stabilized microtubule seeds were attached to silanized

chambers containing anti-DIG antibodies and passivated with

Pluronic F-127. Imaging buffer was prepared as described above;

however, taxol was substituted with 11 lM tubulin (3–5% labeled).

Experiments reported in Figs 1 and 5 were performed using a

Nikon Eclipse Ti2 microscope equipped with a Plan Apo 100 × 1.45

NA TIRF, iLas3 ring TIRF illumination system (GATACA), and an

Andor iXon 897 EMCCD camera. Experiments reported in Fig 8 were

prepared as described above, but were imaged using Nikon Ti-E

microscope (Visitron Systems) with a CFI 100 × 1.49 NA TIRF oil-

immersion objective, iLas2 ring TIRF module, and an Evolve 512

EMCCD camera. Images were recorded using VisiView software.

Experiments reported in Figs 2 and 6 were performed with a Nikon

Ti-E microscope equipped with a Plan Apo 100 × 1.45 NA TIRF oil-

immersion objective, iLas2 ring TIRF module (Roper Scientific) and

an Evolve 512 EMCCD camera (Roper Scientific). Images were

recorded using MetaMorph software.

Experiments with taxol-stabilized microtubules were performed

at ambient temperature (23°C); for experiments with dynamic

microtubules the objective was heated to 34°C using a custom-made

collar coupled with a thermostat, resulting in the flow chamber

being heated to 30°C. Images were acquired every 300 ms, and ini-

tial 10 images were averaged for analysis of Ndc80 clustering. Clus-

tering was expressed as standard deviation (SD) of FAM-Ndc80

fluorescence along the microtubule length. Experiments presented

in Appendix Fig S5 were performed with single blinding: MT and

PJH prepared eight FAM-labeled Ndc80 complexes, VAV then

performed fluorescence microscopy measurements (repeated three

times) and image analysis without knowing a complex’ identity.

Results were unblinded after all analysis was complete.

Image analysis

Coordinates and brightness of particles diffusing on microtubule lat-

tice or tracking their ends were analyzed using Fiji (Schindelin

et al, 2012) and Julia using custom scripts available at https://

github.com/volkovdelft/kymo.jl. Kymographs were made through a

reslice operation using the kymograph_(n)channel.ijm macro. Posi-

tion of a particle was determined in each line of the kymograph using

kymo.ipynb jupyter notebook and following in-line comments. Olig-

omerization was inferred from initial brightness of a particle and the

photobleaching step characteristic for a fluorophore as described pre-

viously (Volkov et al, 2018). Mean squared displacement curves to

characterize one-dimensional diffusion were generated using

process_diffusion.ipynb: coordinates of each diffusing spot were iter-

atively split into segments of equal length with an offset of one data-

point, and subsequently aligned at their start and averaged.

To analyze co-localization of Ndc80 monomers and trimers on

microtubules, trimers were tracked in one fluorescent channel of a

kymograph as above using kymo_2channel.ipynb, and then the

brightness of monomers was measured in the second fluorescent

channel at the coordinates determined for trimer. The resulting

monomer brightness was thresholded using a value for single

Alexa488 fluorophore, and the number of datapoints above the

threshold was divided by the total number of datapoints to calculate

the time fractions for co-localization.

Preparation of beads and force measurements

Beads were prepared as described previously (Volkov et al, 2018).

In brief, 1 lm glass COOH-functionalized beads were coated cova-

lently with PLL-PEG (Poly-L-lysine (20 kDa) grafted with polyethy-

leneglycol (2 kDa), SuSoS AG, Switzerland) containing varying

fraction of biotinylated PLL-PEG of the same composition. Biotins

on the beads were then saturated with streptavidin-oligomerized

Ndc80-TMR trimers. Bead preparations were analyzed for bead

brightness using at least 50 single beads.

Optical trapping was performed using a custom optical setup as

described previously (Volkov et al, 2018). A bead coated with Ndc80

16 of 20 The EMBO Journal e112504 | 2023 � 2023 The Authors

The EMBO Journal Soumitra Polley et al

 14602075, 0, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/em

bj.2022112504 by Q
ueen M

ary U
niversity O

f L
ondo, W

iley O
nline L

ibrary on [19/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/volkovdelft/kymo.jl
https://github.com/volkovdelft/kymo.jl


trimers was captured in a trap with a stiffness of 0.02–0.04 pN/nm

placed near a growing end of a dynamic microtubule. Bead-

microtubule attachment was verified by switching the trap off for sev-

eral seconds and monitoring bead’s motion: successfully attached

beads moved in an arc shape across the direction of microtubule

growth and did not move significantly along it. The bead was then re-

trapped again and the experiment was initiated by simultaneous start

of acquisition of DIC images of the bead-microtubule pair, and the

quadrant photo detector (QPD) readings to monitor bead’s displace-

ment from the trap center. Recording was stopped after the microtu-

bule depolymerized and the bead detached from it, or at will after 30–

40 min of data acquisition if the bead did not detach. In the latter

case, the trap stiffness was increased 10 times, and the bead was rup-

tured from the microtubule using 100 nm steps of the piezo stage.

Motions of a free bead were recorded after detachment for each bead

to later use them to determine trap stiffness.

Cell electroporation

All electroporation experiments of this study were performed as

described using a Neon Transfection System Kit (Thermo Fisher)

(Alex et al, 2019). Cells were collected from the surface of the cell

plate by trypsinization, washed two times with PBS, and counted.

Between 2 and 3 million cells were used per electroporation and

were resuspended in 90 ll of buffer R (Thermo Fisher). Ndc80 com-

plexes with typical concentrations of 40 lM were spun down at

16,700 g for 10 min and then diluted with buffer R in a 1:1 ratio.

For electroporation with antibody, cells were resuspended in 56 ll
of buffer R and the Ndc80-antibody mixture was diluted 1:1 in

buffer R. The Ndc80-antibody and cell suspension were mixed and

then the mixture was loaded into a 100 ll Neon Pipette Tip (Thermo

Fisher). Electroporation was performed at 1,005 V with two consec-

utive pulses of 35 msec. Cells were washed with PBS and then

treated with Trypsin to digest non-cell-internalized proteins. After

another wash with PBS, cells were plated on 6-well plates for immu-

nofluorescence staining or 24-well cell-imaging plates (Ibidi) for

live-cell imaging.

Antibody generation

Peptides C-TQLAEYHKLARKLKLI PKGAENS-NH2 (NDC80410–432),

and Ac-AENSKGYDFEIKF NPEAGANCL-NH2 (NDC80429–450) were

used to generate the antibodies AB-849 and AB-850, respectively.

The peptides, synthesized at a minimal purity of 80% and conju-

gated to Keyhole Limpet Hemocyanin carrier (Mimitopes), were

used for rabbit immunization (Eurogentec). Polyclonal antibodies

were affinity purified from sera using peptides (elution pH 2.5) and

stored at 4°C in PBS supplemented with 150 mM KCl, 0.1% BSA,

and 0.05% NaN3. Recombinant full-length SKA complex was used

for rabbit immunization (Antibody Facility, MPI-CBG). Polyclonal

antibodies were affinity purified from sera using recombinant SKA

(elution pH 2.5) and stored at 4°C in PBS.

Cell culture, siRNA transfection, immunoblotting

HeLa, mCherry-H2B HeLa cell lines were cultured in DMEM (PAM

Biotech) supplemented with 10% FBS (Clontech), 2 mM L-

glutamine (PAN Biotech), 1% Penicillin, Streptomycin (Gibco). Cells

were grown in a humidified chamber at 37°C in the presence of 5%

of CO2. Cell lines were checked regularly for mycoplasma contami-

nation and tested negative. Depletion of endogenous Ndc80 complex

was attained by RNAiMAX (Invitrogen) transfection of siRNAs

targeting three of the four subunits of the Ndc80 complex as

described (Kim & Yu, 2015). The siRNA oligos were GAGUAGAA-

CUAGAAUGUGA (siNdc80-4), GGACACGACAGUCACAAUC

(siSpc24), and CUACAAGGAUUCCAUCAAA (siSpc25). To generate

lysate of cells for immunoblotting, cells treated with control or

Ndc80 complex siRNA were collected by trypsinization and resus-

pended in lysis buffer (150 mM KCl, 75 mM HEPES pH 7.5, 1.5 mM

EGTA, 1.5 mM MgCl2, 10% Glycerol, and 0.075% NP-40 supple-

mented with protease inhibitor cocktail (Serva)). Lysates were run

in 4–12% gradient gels (NuPAGE, ThermoFisher) and proteins were

transferred to a Nitrocellulose membrane for further analysis. The

following antibodies were used for the immunoblot analysis of this

study: anti-Hec1 (human Ndc80; mouse clone 9G3.23 GeneTex, Inc;

1:1,000), anti-Vinculin (mouse monoclonal; clone hVIN-1; Sigma-

Aldrich; 1:10,000), AB-849 and AB-850 (rabbit polyclonal, in-house

generated, 1:500), anti-Ska (rabbit polyclonal, in-house generated

against a recombinant Ska complex, 1:1,000).

Cell treatment, microscopy, immunofluorescence detection, and
live-cell imaging

Cells were imaged with a customized 3i Marianas system (Intelligent

Imaging Innovations) equipped with an Axio Observer Z1 micro-

scope chassis (Zeiss), a CSU-X1 confocal scanner unit (Yokogawa

Electric Corporation), Plan-Apochromat 100×/1.4 NA objectives

(Zeiss), and an Orca Flash 4.0 sCMOS Camera (Hamamatsu). Slide

book software was used to acquire images as Z sections. Additional

images were acquired using a DeltaVision Elite System (GE Health-

care) equipped with an IX-71 inverted microscope (Olympus), a

UPlanFLN 40 × 1.3 NA objective (Olympus), and a pco.edge sCMOS

camera (PCO-TECH Inc.). Live cell movies were taken as Z scans

every 10 min interval for 16 h. The softWoRx software was used for

maximal intensity projection and analysis of the movies. For immu-

nofluorescence sample preparation, cells were grown on poly-L-

Lysine (Millipore) coated coverslips and permeabilized with a 0.5%

Triton-X in PHEM buffer. Cells were fixed with 4% paraformalde-

hyde (PFA) and then blocked for 1 h with 5% boiled donkey serum.

The following antibodies were used for immunostaining: anti-Hec1

(human Ndc80; mouse clone 9G3.23 GeneTex, Inc; 1:1,000), anti-

CENP-C (guineapig polyclonal, MBL, 1:500), anti-CREST/anti-

centromere antibodies (human, Antibodies Inc, 1:1,000), anti-

tubulin (mouse monoclonal, Sigma, 1:5,000), Knl1 (rabbit poly-

clonal, in house, 1:500), Nsl1 (mouse monoclonal, in house, 1:800),

CENP-T (rabbit polyclonal, in house, 1:500), BUB1 (rabbit poly-

clonal, Abcam, 1:500), BubR1 (rabbit polyclonal, Abcam, 1:400),

anti-Ska (rabbit polyclonal, in-house generated against a recombi-

nant Ska complex, 1:5,000). DNA was visualized by staining with

0.5 lg/ml DAPI (Serva) and coverslips were mounted to slide with

Mowiol mounting media. All images were processed using Fiji.

Quantifications of protein signals were measured using a custom-

written script. All signals were normalized to either CREST or

CENP-C signal. To calculate times in mitosis, 16 h (960 min) long

live-cell movies were analyzed manually. Cells that entered mitosis

within the first 500 min of the movie were accounted for. Cells
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already in mitosis at the start of the movie were not analyzed.

Mitotic duration was calculated from the time that cells condensed

their chromosomes until they exited mitosis. For cold shock assay,

cells were kept on ice and ice-cold media was added. Cells were

kept in this condition for 14 min and then fixed with 4% PFA and

proceeded to immunofluorescence staining as mentioned above. For

treatment with drugs, hesperidin (500 nM), reversine (250 nM),

and nocodazole (3.3 lM) were added 1 h before starting the live-

cell movies.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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Figure EV1. Structural in silico analysis of the human Ndc80 complex.

A Boundaries and Predicted Aligned Error (PAE) scores of the three Ndc80 segments that were predicted by AF2 multimer. These fragments were used to generate a
composite prediction of the full-length Ndc80 complex. More information can be found in the Materials and Methods section.

B The prediction of the full-length Ndc80 complexes with colors representing the different subunits (as in Fig 1B) and the local prediction confidence intervals.
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Figure EV2. Alignments, phylogenetic tree, and structural conservation of the Ndc80 kink and loop.

A Sequence alignment of the loop region of the NDC80 subunit in various species. Residue numbers correspond to the human NDC80.
B Unrooted phylogenetic tree that was generated with complete NDC80 sequences. Sequences in panel (A) were arranged according to this tree. Species belonging to

the Chordata phylum (light green) and the Fungi kingdom (purple) are indicated. Black dots mark species for which we predicted the structure.
C Predicted structures of the NDC80:NUF2 region spanning the hinge and loop regions. Shown in similar orientations following structural alignment to the human

fragment NDC80376–516:NUF2269–356.

Source data are available online for this figure.

▸Figure EV3. Electroporation efficiency and a comparison of loop mutants.

A Immunofluorescence quantification of Ndc80, KNL1, and NSL1 at kinetochores following electroporation of different Ndc80 constructs. The number of
kinetochores analyzed for NDC80: wt - 758, ΔL - 2,053, M5 - 1,612, KNL1: wt - 697, ΔL - 635, M5 - 602, and NSL1: wt - 647, ΔL - 644, M5 - 611. Red lines indicate
median value with interquartile range.

B Schematic representation of the predicted structure of the NDC80:NUF2 loop region with annotations to illustrate residues with side-chains that pack a hydropho-
bic core and mutants that interfere with chromosome congression as illustrated in Fig 4E and Wimbish et al (2020).

C Immunofluorescence quantification of various kinetochore proteins in cells that were treated as described in panel (A), but with nocodazole added 15 h after
electroporation and 3 h before fixation. The number of kinetochores analyzed for CENP-T: wt - 799, ΔL - 750, M5 - 855, BUB1: wt - 2,226, ΔL - 1,993, M5 - 1,598,
and BUBR1: wt - 2,315, ΔL - 2,112, M5 - 1,549. Red lines indicate median value with interquartile range.

D A new anti-SKA antibody, generated against the full-length recombinant SKA complex, mainly recognizes SKA3 in a HeLa cell lysate using immunoblotting. Aster-
isks indicate non-specific bands that are not sensitive to depletion of the SKA complex by RNAi.

E–G The antibody also recognizes SKA by immunofluorescence. SKA levels are higher in MG132 arrested cells than in STLC or nocodazole arrested cells. Scale bar:
5 lm.

H, I SKA levels recruited to kinetochores in nocodazole-exposed cells with various Ndc80 complexes. Scale bar: 5 lm.

Source data are available online for this figure.
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Figure EV4. Loop-dependent binding between Ndc80 monomers and trimers on microtubules.

A Supplementary information for Fig 5A–D. High-speed recordings to quantify residence time of wild-type and loopless Ndc80 monomers. The top two kymographs
show a microtubule with monomers binding and unbinding. The lower two kymographs show the binding and unbinding of Ndc80 monomers to a microtubule with
a Ndc80 trimer. Since trimers are practically motionless on this timescale, only their initial location was recorded and indicated. Corresponding mean residence times
and SEM. are shown. The number of analyzed events is indicated. Scale bar: 5 lm.

B Distribution of residence times of wild-type and loopless Ndc80 monomers associating with microtubule-bound Ndc80 trimers. A single-exponential fit described the
residence time of Ndc80Dloop, likely corresponding to Ndc80Dloop:microtubule off-rates. Residence time of full-length Ndc80 could be fitted with two exponents, likely
corresponding to Ndc80:microtubule and Ndc80:trimer:microtubule off-rates.

C Typical kymographs showing Ndc80 trimers (magenta) and transiently binding Ndc80 monomers (yellow). Scale bars: vertical (100 s), horizontal (5 lm).

Source data are available online for this figure.

▸Figure EV5. Characterization of AB-849 and AB-850 in vitro.

A AB-849 and AB-850 recognize NDC80 in a HeLa cell lysate (lys) using immunoblotting. Recombinant Ndc80 complex (p) was used as a reference (see Fig 6A) Antibody
dilutions are indicated and short (top panel) and long (bottom panel) exposures are shown.

B Experimental workflow to electroporate Ndc80 complexes with AB-849 or AB-850 into cells.
C The localization of AB-849, AB-850, NDC80, CENP-C, and DNA was analyzed using immunofluorescence microscopy. Representative cells are shown. Scale bar:

10 lm.
D Overview of mutants M15–M20, mutated in the epitope region of AB-849 to further test putative effects of the AB on the SAC.
E Time spent in mitosis in the presence or absence of nocodazole. Cells were electroporated with various Ndc80 constructs, when indicated following mixture with

AB-849 or AB-850. Every dot represents a cell and red lines indicate median values. Effects of AB-849 on the time spent in mitosis were not recapitulated by any of
the mutants M15–M20.

Source data are available online for this figure.
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2 

Appendix Figure S1 Preparation of full-length and loopless Ndc80, TS[Ndc80]3 modules, and coated beads.  26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

A) The fluorescent peptide, Sortase, and labelled Ndc80 complexes with (full-length, blue) and without (Δloop, orange) the loop were 

separated using size-exclusion chromatography. The gray area indicates Ndc80 that was collected and (without further concentration) 

stored for further use.  

B) Ndc80 complexes from panel A were analysed by in-gel fluorescence and Coomassie staining following SDS-PAGE. These 

complexes were used for experiments shown in Figure 1F-K and Figure 5A-D.  

C) Full-length and loopless Ndc80 complexes (Sortase labelled with FAM) were analysed by mass photometry. Determined and 

theoretical masses are indicated in the legend. These complexes were also used for the SEC-MALS shown in Figure 1D.  

D) Schematic overview of the preparation of Ndc80 trimers. The fluorescent peptide, Sortase, labelled Ndc80 monomers (full-length, 

blue; Δloop, orange), and Ndc80 trimers were separated using size-exclusion chromatography. Selected fractions containing Ndc80 

trimers are marked in grey and were analysed by SDS-PAGE. Since samples were not boiled, the streptavidin scaffold and the 

covalently bound SPC24 subunits remain intact. See the Materials and Methods and (Volkov et al., 2018) for more information.  

E) Brightness of PLL-PEG-conjugated beads with various percentage of biotinylation, subsequently saturated with Ndc80TMR trimers. 

Shown are mean and SD. Each datapoint represents a single bead preparation, at least 50 beads were quantified for each preparation.  

F) Fraction of stalls resulting in a rescue, binned by individual bead preparation, and correlated to the median bean brightness in that 

preparation.  

Appendix Figure S2 Chemical crosslinking followed by mass spectrometry and proximity maps. 

A) Crosslinking procedure and SDS-PAGE analysis of Ndc80, Mis12:Ndc80, Ndc80Δloop, and Mis12:Ndc80Δloop. The asterisks indicate 

the four subunits of the Mis12 complex. 45 

B) Analysis of side-chains crosslinked by DSBU in the various samples. M refers to the free NH2-terminus.46 

C) Mapping of all (left) and top-scoring (right) crosslinks of full-length Ndc80 on the predicted structure of the full-length Ndc80 47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

complex. A subset of crosslinks, all with a false-discovery rate below 1%, connect residues that are far apart in the extended Ndc80 

structure. For instance, SPC25 K133 and K203 connect to various regions of the complex. Whether these long-distance crosslinks 

reflect transient compacted conformations of Ndc80 or transient inter-complex interactions is unclear. Lengths indicate Cα- Cα 

distances. Crosslinks spanning a distance below 30 Å are shown separately, with magnifications of the loop and tetramerisation 

regions.  

D) Mapping of all (left) and top-scoring (right) crosslinks of Ndc80Δloop on the predicted structure of the full-length Ndc80 complex. 

Crosslinks spanning a distance below 30 Å are shown separately, with magnifications of the loop and tetramerisation regions, as well 

as a prediction of the loopless Ndc80 region. 

Appendix Figure S3 An NDC80:NUF2 fragment encompassing the loop is monomeric and does not bind Ndc80. 

A) Size-exclusion chromatography analysis (Superdex 75 16/600) of the NDC80:NUF2 loop fragment before and after cleavage of the 

GST-tag. The N-terminus of NDC80376-517 was fluorescently labeled using Sortase  following GST cleavage.  

B) GST or GST-NDC80:NUF2 was immobilized on beads and incubated with the NDC80:NUF2 fragment, full-length Ndc80, or 

loopless Ndc80. 61 
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3 

62 

Appendix Figure S4 Effects of AB-849 and AB-850 in vitro.  63 

A) A fluorescently labelled secondary antibody was used to exclude microtubule binding of primary antibodies in the absence of 64 

Ndc80. Scale bar: 5 µm.  65 

B) The brightness of loopless Ndc80 trimers in absence and in presence of crosslinking antibodies was followed over time. Trimers 66 

accumulate in 10 minutes in an antibody depending manner (AB-850 does not recognize loopless Ndc80). 67 

C) Initial brightness distributions of Ndc80 trimers. Shaded areas mark datapoints used to analyse diffusion (Figure 6). To enable 68 

experiments with antibodies, these experiments were performed without reducing agents. 69 

D) Comparable conditions as in panel C, but with the buffer including reducing reagents that was used for other in vitro experiments 70 

with microtubules (such as in Figure 2D-E). 71 

72 

Appendix Figure S5 Clustering of Ndc80 mutants on microtubules.  73 

A) SDS-PAGE analysis and in-gel fluorescence of eight different FAM-labelled Ndc80 complexes used to analyse Ndc80 clustering on74 

microtubules.  75 

B) The standard deviation (SD) of Ndc80 fluorescence along microtubules was determined as a readout for distribution uniformity. 76 

Median, 25-75% boxes, and 5-95% boxes were determined for eight Ndc80 variants. Example micrographs (and their corresponding 77 

SD values) are shown. 78 
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Appendix Figure S1  -  Preparation of full-length and loopless Ndc80,TS[Ndc80]3 modules, and coated beads
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Appendix Figure S2  -  Chemical crosslinking followed by mass spectrometry and proximity maps
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Appendix Figure S3  -  An NDC80:NUF2 fragment encompassing the loop is monomeric and does not bind Ndc80 
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Appendix Figure S4  -  Effects of AB-849 and AB-850 in vitro
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Appendix Figure S5  -  Clustering of Ndc80 mutants on microtubules
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